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Abs trac t  

Generalizing from a classical application of the paradigm of Elementary Measurement 
discussed elsewhere (Leiter, 1969), we consider a non-linear, spinor wave-mechanical 
field theory of Elementary Measurement. In this theory, charged particles are represented 
by complex spinor c-number fields interacting through their associated electromagnetic 
fields in space-time. The paradigm of Elementary Measurement implies that the particle 
fields, and their associated c-number electromagnetic felds, are interdependent degrees 
of freedom in an action principle associated with the measurement interaction, and are 
not elementary in themselves. Making the action stationary with respect to the interacting 
field degrees of freedom gives the equations of motion of the measurement. 

The application of this model theory to atomic hydrogen yields the result that the 
inherent 'limit cycle solutions' (LCS):~ of the non-linear measurement equations corre- 
spond to the quantum levels of conventional relativistic Dirac quantum mechanics of 
hydrogen, in the approximation that the nucleus has infinite mass.w 

Superpositions of these Dirac-LCS solutions have the property of collapsing (redaction 
of the wave packet) into one of the LCS in the superposition, in a characteristic time which 
is identical to the 'lifetime' of  the associated atomic levels as calculated from conventional 
quantum mechanics. Hence, in this c-number electromagnetic theoi'y, both spontaneous 
and induced transitions can be accounted for. 'Photons', in this theory, are not elementary 
particles, but instead are associated with the secondary dynamics related to the inherent 
nonlinear structure in the elementary measurement equations of motion. The 'hidden 
variable' characteristics of this measurement theory (as seen from the point of view of 
ordinary quantum mechanics), in describing a universe made up of such hydrogen atoms, 
is discussed. Within this context, a consistent derivation of the Planck blackbody radiation 
formula is given, in which the associated electromagnetic fields are c-numbers and are 
not second quantized. Finally, a generalization of this prototype model theory, to a more 
consistent form which can account for the presence of 'vacuum interaction processes' 
and negative energy states, is suggested. 

t Preliminary study for this work was done at the Albert Einstein Institute of Physics, 
Technion, in Haifa, Israel, during the summer of 1965. 

.~ Minorsky, N. (1962). Nonlinear Oscillations, Chaps. 2, 6 and 21 and pp. 73-74. 
Van Nostrand. Additional information on stability, albeit on an equation different from 
ours, is found in Echaus, V. (1965). Studies in Nonlinear Stability Theory. Springer- 
Verlag. 

w This means that the reduced mass correction is neglected in this model theory, but 
can be included by making the proper generalizations. In this regard, see footnote on 
page 218. 

[] Present address, Departmentof Physics, University of Windsor, Windsor I1, Ontario. 
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206 DARRYL LEITER 

1. Introduction 

Neils Bohr (1958, 1963), in his later books on quantum theory, em- 
phasized the fact that physical events always involve an observer as well 
as an object to be observed: ' . . .  any observation of atomic phenomena will 
involve an interaction with the agency of observation not to be neglected. 
Accordingly an independent reality in the ordinary physical sense can 
neither be ascribed to the phenomena or to the agency of observation'. 
Bohr qualifies this statement, in his 'Copenhagen Interpretation' of the 
measurement process, by pointing out that the measurement process 
cannot be understood as a causal interaction, between two mechanical 
systems, in any ordinary sense; ' . . . t he  objects measured in a quantum 
measurement process have a different status in the theory to the measure- 
ment instruments.. ,  in that they belong to different levels of functioning 
which are not related mechanically'. 

Basic difficulties arise when one tries to operationally define the concept 
of  'elementary particle' within the above framework, because the very act 
of trying to observe such 'elementary' entities involves interactions with 
other such entities in the measuring apparatus. In particular, the physical 
act of observing an 'elementary charged particle' always involves inter- 
actions with other such 'elementary' charged particles, because of the 
empirical existence of an indivisible, non-zero, unit of electric charge. 
Hence the concept of an elementary charged particle is basically non- 
operational, since the very act of observing such an entity destroys its 
'elementarity'. 

Because of the value of eliminating non-operational concepts from 
physical theories, one is led to eliminate the concept of 'elementary particle' 
from measurement theory, but cannot do so without changing the basic 
ideas upon which it is formed. Hence one is led to attempt to replace the 
conventional measurement paradigm, described above, by a new paradigm 
which gives a complete, operational description of the measurement process, 
without the concept of elementary particle. The new paradigm states that; 
in a physical event, it is the 'mutual measurement interaction' between the 
'observer' and the 'object to be observed' which is the 'elementary' building 
block of any theory attempting to describe that physical event.t 

This new paradigm, of the measurement process, is similar to that of  
Bohr, in that it implies that the measurement interaction can never be 
neglected in the observation of atomic processes. However, it differs from 
Bohr's approach in that the 'object to be measured' and the 'measuring 
instrument' are put on equal footing. This means that they belong to the 
same level of functioning (being related by the dynamics of the 'elementary 

t At this point, the author wishes to make an important distinction between the work 
presented in this paper (and quoted in Leiter, 1969) and that of Sachs, M. and Schwebel, S. 
(1961). Nuovo cimento, 21, 197, Suppl. No. 2. Specifically, the author wishes to point 
out that his work is related to the work of Sachs and Schwebel only in the fact that a 
similar basic paradigm is used. 



CAN ATOMIC PROCESSES BE DESCRIBED 9 207 

measurement' in which they participate). This means that the 'elementary 
measurement' must be described in space-time, since that is the region in 
which it is physically observed. 

Within the context of a classical electrodynamic theory of 'Elementary 
Measurement', charged point particles (associated with J~(n)(x,t); K =  1, 
2,..,N) and their related electromagnetic fields, A(~ ~) (x, t ], are not elemen- 
tary in themselves, but rather the mutual measurement interactions 
J~,Cx)A~@)" (Kr J] are the fundamental building blocks of the theory. The 
resulting theory has been shown to be equivalent to that of the 'action-at-a- 
distance' electrodynamics of Wheeler & Feynman (1945, 1949),? with the 
distinct advantage that retardation and radiation reaction are accounted 
for, in a Lagrangian formalism, without the use of any 'complete absorber 
assumption'. This means that a theory such as this can account for all the 
physical phenomena associated with the Maxwell-Lorentz electrodynamics 
of point charges, without the paradoxical infinities associated with 'self- 
interaction'. 

Because of the success of this paradigm in the classical context, the most 
natural next step is to develop a 'wave-mechanical' generalization of it. 
Hence what we propose to do, in this paper, is to develop a model non- 
linear Dirac wave-mechanical theory of 'elementary measurement' electro- 
dynamics for 'hydrogen atom' measurement interactions. 

Generalizing from the classical application of this paradigm discussed 
above, we shall develop a spinor model, non-linear wave-mechanical field 
theory of elementary measurement, in which charged 'particles' are not 
basically corpuscular in nature, but instead are represented (in space-time) 
by complex, spinor matter fields. These matter fields and their associated 
electromagnetic potential fields are not elementary in themselves, but are 
interdependent degrees of freedom in a scalar 'elementary measurement' 
field in space-time. This elementary measurement field structure represents 
the elements of the theory which are directly connected to the objective 
reality of 'observable physical phenomena'. 

There are two layers to the structure of this theory: an abstract mathe- 
matical layer, and an objective physical layer. The former involves the 
spinor matter fields and their electromagnetic fields in space-time, while 
the latter involves the mutual interaction energies, momenta, etc. as derived 
from the 'elementary measurement' energy-momentum tensor, derived 
from the scalar elementary measurement field structure in the action 
principle. The matter fields and their electromagnetic fields are, by them- 
selves, merely mathematical abstractions. They are accessible to observa- 
tion, only by virtue of the mutual measurement interaction energies they 
can combine to produce. It is only these 'elementary measurement fields' 
which are objective physical quantities, directly accessible to physical 
observation. 

In the following we shall discuss the application of this theory to a 

t See also Leiter (1969). 
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relativistic description of 'hydrogen atoms', in the approximation that the 
proton nucleus has infinite mass. At this stage of the theory, 'vacuum and 
annihilation' effects, associated with the existence of negative energy 
states, are neglected. These effects, and also the Pauli Exclusion Principle, 
can be included in a more general version of the theory.-~ 

There are no corpuscular 'elementary particles' in this theory, only 
charged 'matter waves' participating in 'elementary' electromagnetic 
measurement interactions in space-time. Hence the conventional 'wave- 
particle' duality does not arise in this type of measurement theory. From 
the Schwartz Inequality,~ inherent in this theory, a mathematical equivalent 
of the Heisenberg Uncertainty Principle may be deduced, which implies 
the same physical consequences as that of the uncertainty principle in 
conventional quantum mechanics. However, the lack of wave-particle 
duality implies that 'probability' and 'uncertainty' are not fundamental to 
its interpretation. 

The fact that the non-linear measurement field equations have 'limit 
cycle solutions' (LCS) localized into a spatial region on the order of 10 .8 cm, 
will nonetheless give the atomic measurement process the apparent smeared 
out 'corpuscular' character usually associated with the conventional 
quantum uncertainty interpretation, but without any 'elementary cor- 
puscles' actually being involved. 

The LCS play the role of 'quantum levels' in this theory, and, even 
though they are the solution to an inherently non-linear differential 
equation, form a complete set of functions for the discreet part of the non- 
linear function space involved. For  this reason, an arbitrary non-linear 
solution, spanning the discreet function space of the non-linear equations, 
can be represented by a superposition of LCS with time-dependent co- 
efficients. We will show that these superpositions of LCS have the inherent 
property of collapsing continuously, in a sequence which depends on the 
'selection rules' involved, into the LCS contained in the superposition. 
Hence, in this theory, these solutions [which belong to the class of 'limit 
cycle transition' solutions (LCT)] will give a description of 'quantum 
jumps' in terms of a continuous space-time picture. The (LCT) solutions 
have the property of evolving from one LCS to another in a characteristic 
time similar to that of the 'lifetime' which would be calculated from con- 
ventional quantum mechanics (e.g. on the order of 10 -8 sec for 'dipole' 

-~ Leiter, D. Elementary Measurement Electrodynamics II: A Relativistic Non- 
linear Wave-Mechanical Theory For Many-Electron Atoms (in preparation). In 
this future publication, the work of the present article is generalized so as to include 
the effects of the Pauli Exclusion Principle, and correlation interaction effects. This is 
accomplished by properly antisymmetrizing the qabeling' of the elementary measurement 
structure, directly in the action principle. 

~: Messiah, A. (1966). Quantum Mechanics, Vol. I, Chap. IV, Sections 9 and 10. John 
Wiley and Sons. In this reference it is shown that the Schwartz Inequality, and the 
constraints it puts on the solutions to the associated wave mechanics, are derivable from 
general principles which are independent of whether the wave-mechanical equations of 
motion are linear or non-linear. 
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transitions). This is possible in this theory because, contrary to the basic 
structure of conventional quantum mechanics, the measurement process 
is being described by non-linear c-number differential equations in space- 
time, rather than by linear differential equations in configuration space. 
It is the linear configuration space characteristics of quantum mechanical 
equations which prevents quantum jumps from being describable, except 
in statistical terms. 

Radiation in this theory is defined in a similar fashion as that of action- 
at-a-distance electrodynamics.t When an LCT occurs, for a given hydrogen 
atom, it emits a sequence of 'classical' pulses in its corresponding electro- 
magnetic field. These pulses travel outward, at the speed of light, and are 
eventually absorbed by other hydrogen atoms in the model universe. 
However, in this theory, both the 'emitter' and the 'detector' are required 
to describe the radiation process (which we call 'measurement radiation'). 
Hence, even though the electromagnetic pulse is a classical one, the response 
of the detector to this classical pulse is to make induced LCT to higher (or 
lower) LCS, depending on the initial state of the detector atom. Since this 
will change the energy of the detector atom by discrete amounts (associated 
with the fact that the LCS energies are discreet), then the 'measurement 
radiation', represented by the induced response of the detector atom, is 
'quantized' in the sense that the induced response of the detector is quan- 
tized. Since measurement radiation always requires the detector for its 
definition (as well as for its actual physical observation in the laboratory), 
then measurement radiation will contain the apparent effects of 'photons' 
without the requirement of 'second quantization' of the associated electro- 
magnetic field. 

An interesting connection exists between this essentially deterministic 
theory of the elementary measurement of charged matter fields in space- 
time, and the statistical predictions of conventional quantum mechanics in 
configuration space. First of all, as was noted previously, the LCS are in 
direct correspondence with the conventional quantum mechanics of non 
overlapping Dirac hydrogen atoms. In addition, if we consider a model 
universe made up of a large number of hydrogen atoms, then in order to 
make a deterministic prediction from the theory, we must have the required 
initial data needed to run the large number of associated non-linear dif- 
ferential equations of the system in space-time. However, we will show that 
the measurement equations require the initial values of the matter wave- 
functions and their derivatives. The conventional quantum mechanics of 
the problem would only require the initial values of the quantum mechanical 
wavefunction, in configuration space, in order to run the associated linear 
first-order quantum mechanical equation. We will show that 'elementary 
measurement electrodynamics', applied to wave mechanics, represents a 
kind of 'hidden variable' theory with respect to quantum mechanics, in that 

t See Wheeler and Feynman (1949), and Leiter (1969). 
$ Refer to Leiter (1969), section on Elementary Measurement Radiation. 
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the greater amount of initial data (than required by conventional quantum 
mechanics) for the aggregate of atoms, when treated in a classical statistical 
sense, can yield the associated statistical predictions of quantum mechanics. 
Interference effects can still occur, within this model, because of the wave- 
mechanical structure over which the classical statistics is being taken.t 
In this fashion a 'probability per unit time' of an 'induced' transition and of 
a 'spontaneous' transition can be defined for a typical hydrogen atom in 
the aggregate. These quantities are then found to be identical to the 'Einstein 
A and B coefficients', usually derived within the framework of quantum 
electrodymamics. However, in this model, no 'second quantization' of 
the associated electromagnetic fields is ever used. The implication to be 
drawn from this result is that, in theories of this type, the apparent effects 
of 'photons' can be generated without ever introducing 'photons' as 
elementary particles (e.g. quanta of the associated second-quantized 
electromagnetic field). 

Having calculated the 'Einstein A and  B coefficients' of the theory, we 
will proceed to assume that the aggregate of hydrogen atoms is in statistical 
equilibrium, with respect to the mutual 'measurement radiation' energy 
being swapped back and forth in the model universe. Then the usual 
derivation of the Planck blackbody formula, utilizing the Einstein A and B 
coefficients in equilibrium, follows automatically for the 'measurement' 
radiation energy density per unit frequency, detected by a typical hydrogen 
atom in the model universe. This result is very interesting, in that this type 
of atomic theory (which falls into the category of semi-classical radiation 
theories) is able to account for both spontaneous and induced transitions 
of an aggregate of atoms, and yield from this the well-known Planck black- 
body formula, without recourse to a underlying 'second quantization' of 
the associated electromagnetic fields in the theory. 

In the 2nd and 3rd section of this paper we will discuss possible generaliza- 
tions of this theory to many-electron atoms (where the Pauli Exclusion 
Principle must be accounted for)~: and to the structure of positronium and 
the electron-positron interaction in general, and the role it plays (in 
conjunction with the Pauli effect) in avoiding the 'negative energy' collapse 
of relativistic atoms described by Dirac wave mechanics. 

2. Structure of The Non-linear Elementary Measurement Electrodynamic 
Field Theory for Non-overlapping Hydrogen Atoms 

In our model wave-mechanical theory of Elementary Measurement 
Electrodynamics, the matter fields will be denoted by the complex spinor 
fields ~b(2~)(x,t), where K =  1, 2 . . . .  , N, will denote the particle field label 

t This is explained in detail in Section 6 of this article~ 
If the Pauli Exclusion Principle is not properly accounted for, in any semiclassical 

Dirac theory for many-electron structure, then nature of this type of theory involves a 
tendency to collapse into a minus infinity of energy, because of the presence of negative 
energy solutions. 
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associated with the matter degrees of freedom in the associated hydrogen 
atom interactions. The proton degrees of freedom will be assumed to have 
an infinite mass associated with them, and will hence be effectively de- 
coupled from the dynamics of the interactions.t The associated electronic 
current densities, in space-time, are given by 

J~2g)(x,t)=--e~/2K)(x,t)~,u~b~2K)(x,t) (K= 1,2 . . . .  ,N) (2.1) 

and the related electromagnetic field degrees of freedom, related to each 
electronic matter field and each infinitely massive proton field, are given by 
Atf)(x,t); -l~r)uv ----~.vA~K~-- -~v,~Ac~) where K =  1, 2 ..... N (there are N hydrogen 
atoms assumed to exist in the model universe). The 'protonic' current 
densities in space-time are 

J~2K-I)(X, t) = (ec~3(xt2r-l)), O) (K = 1,2 . . . . .  N) (2.2) 

where the assumption of non-overlapping atoms:~ requires that 

Ix <2~-I) - x~2S-l)l >> (Bohr radius) K # J = 1, 2 . . . . .  2N (2.3) 

Applying the paradigm of 'Elementary Measurement', in analogy to the 
method discussed in Leiter (1969), the charged matter fields ~b <~), and their 
associated current density fields j~K) (K = 1,2 ..... 2N) and electromagnetic 
fields A~ K) (K---1,2 ..... 2N), are not elementary entities in themselves. 
Instead, they are considered to be interdependent degrees of freedom in 
'elementary mutual measurement fields' J~IC)A~S) (K#  J =  1,2 ..... 2N), 
which are considered to be physically more fundamental than either j~K) 
or A~ s). Hence, on the basis of the paradigm which underlies this model 
theory of atomic structure, 'self-measurement' fields J~u~) A "(K) (K = 1,2 . . . .  , 
2N), are excluded, a priori, as being operationally unphysical. 

Then in terms of these field degrees of freedom, the action principle, built 
out of the possible 'elementary measurement' interactions available, is 

I =  f dx 4 ~'Di~r c2K') + ~ ~ ~" ~ 4 + j~r, A~,ts, (2.4) 
1 K = I  J ~ K = I  

= f dx*(oW) 

"~ This is because the strength of the non-linear electromagnetic interaction (i.e. that part 
in addition to the coulomb interaction) will be proportional to the ratio of the masses 
of the electron to the proton. As the proton mass is allowed to become infinite, this non- 
linearity vanishes, and the proton behaves as if it is 'external' to the system. Of course, 
this situation is modified if the proton is allowed to have a dynamic 'structure' (see 
footnote on p. 218). 

:~ This approximation is required in our model, since we neglect the effects of the Pauli 
Principle. Inclusion of the Pauli Effect, as discussed in footnote on p. 208 and footnote 
on p. 217. would allow us to relax this assumption, if we wished, but would not alter 
the results of our present theory. This is because the physical effects of the Pauli Principle 
are negligible for non-overlapping atoms anyway, and the generalized theory would 
yield the same results as that of Section 2, since only non-overlapping atoms are dealt 
with there. 
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where ~c~ao~rac(4J(K) ) is the Dirac Lagrangian density"r 

~(~gDirac(~(2K) ) ~ �89 0/~7~ + m) ~(2K) _1_ h.c . ]  (2 .5)  

and units with h = c = 1 ; ~ = eZ/4rr; m, e = physical mass, charge are used. 
Since the proton mass is taken to be infinite, it is effectively decoupled 
from the dynamics of  the interaction, in this approximation, hence only 
the electron matter fields ~b(2r)(x, t); K =  1,2 . . . . .  N and the electronic- 
p ro ton i c  electromagnetic fields A~r); K ~  1 ,2 , . . . , 2N are dynamical 
variables in this model. The currents in (2.4) are, of course, given by (2.1) 
and (2.2). We emphasize, that in the action principle (2.4), all 'self-measure- 
ment '  fields, J~r)A o(K) are excluded, a priori, from the system. This is as 
required by the basic paradigm of the theory which states that it is only 
the 'mutual  measurement interactions' which are the basic building of the 
physical system. 

Setting ~I = 0 with respect to the dynamical variables, yields the equa- 
tions of motion of the elementary measurement fields, representing the 
interaction of N non-overlapping hydrogen atoms in space-time, are 

- i  01~7" + m - e ~ (A~S) ~,,) ~(2K, = 0 (K = 1, 2 , . . . ,  N)  (2.6) 
./~:2K= 1 

and the corresponding Maxwell equations 
2N 2N 
E ~(~>'~ s<, ~> : v v  = Z ( K =  1,2 . . . . .  2N) (2.7) 

J@K=I J:/:K=I 

Ftr),v ,~ - 0 (2.8) 

Equations (2.6) and (2.7) represent together a set of  N coupled, non- 
linear integro-differential equations in four-dimensional space-time. The 
integro-differential character will become more explicit when we solve the 
Maxwell equations for A~ s) in terms of j (s) ,  and substitute this into (2.6). 
However, before carrying this procedure out, we note that in keeping 
with the basic paradigm, the Maxwell equations of this model are to be 
considered as four-vector connections, which give a prescription for 
converting A~u s) into their associated j~s). This will require that all homo- 
geneous solutions to (2.7), unconnected f rom currents, must be omitted as 
being unphysicat, since they do not represent 'mutual '  elementary measure- 
ment interactions when coupled to other fields in the system~. To do this 

t We essentially use the Dirae Bispinor notation of Schweber, S. (1961). Introduction 
To Relativistic Quantum FieM Theory, (1961). Chap. 3. Row-Peterson. 

:~ This is because homogeneous solutions to the associated Maxwell equations, un- 
coupled from currents, while generally present (for mathematical reasons), may be 
excluded (for physical reasons). Since elementary measurement interactions involve (in 
this theory) the interaction of electric currents with electric currents, then the interactions 
of electric currents with homogeneous potentials, unconnected to currents, must be 
excluded in this theory in order to be consistent with the basic paradigm. We refer the 
reader to the article by Leiter (1969) for the classical implications of this assumption. 
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we note that  if  we choose the Maxwell  vector  potentials to obey the Lorentz  
condi t ion 

A~ J)'u = 0 (2.9) 
then (2.7) becomes 

2N 

J~K=I  

2N 
[ZA~ s ) =  ~ J~J) ( K = l , 2 , . . . , 2 N )  (2.10) 

J~K=I  

I f  there is at least one hydrogen a tom in our mode] universe (N~> 1), then 
(2.10) can be solved algebraically for  the individual DA~ J) in terms of  the 
individual j~s), since the determinant  of  the coefficients o f  [ZA~ s) is 
non-zero in (2.10), as 

[~A~a) = j ~ s )  ( J =  1,2 . . . . .  2N)  (2.11) 

We can solve (2.11) for the solutions which are always coupled to currents 
by using the Green function D(a~)(x - x ' ) ,  as 

2N 
= ( dx'4 Z l~(J'~ - x')J~K)(x ') A J ( x )  (2.12) ,) K=I 

where D (Jt~ satisfies the equat ion 

[~D(aK)(x -- x ' )  = 34(x -- x ' ) 3  ar  (2.13) 

Equat ion  (2.12) will automat ical ly  omit  homogeneous  solutions, un- 
connected  f r o m  currents,  as required by the basic pa rad igm. t  The  mos t  
general solution to (2.13) is 

D(J t~  - x ' )  = D+(x  - x ' )  ~JK + D_(X -- x ' ) ) d  ~ (2.14) 

where 

X ~ D+(x - x ' )  = Dret.(x - ~  ) • DAav.(X -- x ' )  (2.15) 
- 2 

and A JK is an arbi t rary  constant  matrix,  to be determined empirically. 
Substituting equations (2.12) through (2.15) into (2.6) yields the non- 
linear integro-differential equations of  mot ion  of  the measurement ,  

[ ( ~ J~2K= 1 2N L=I 2N )1 r ~- ~ Z AJL •(-)(L) r = 0 (2.16) - i ~  + m - e [sT, 2K= 1 

( X =  1,2 . . . . .  N)  

where A~ K) y~ - d (~) ; i~ =- iO~ y~ and 

A~*-)(~'(x)--fdx'4D+_(x-x')J~)(x ') ( J= l ,2  . . . . .  2N) (2.17) 

? This occurs, even though [in equations (2.12) and (2.14)] A~_~] ) obeys the homogeneous (J) maxwell equation. This is because A~'Sg ), being defined in terms of the current J~i , is not 
a homogeneous solution unconnected from currents. Hence the interactions it plays a role 
in, will be different than that generated between homogeneous potentials, unconnected 
from currents, and currents. For this reason A~_~ is admissible under the basic paradigm 
of the theory. 
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Since "~v(r~t.)a(s) = A~uS)(+)+ A~u s)(-) ,  then (2.16) can be written in the form 
(K--- 1, 2 , . . . , U )  

- i ~  + m - e { s .  2 r =  l ~ (ret.)  -}- ~- AJL A ( - ) ( L )  - -  A ( J ) ( - )  ~ ( 2 K )  = 0 
J :#2K= 1 \K=I 

(2.18) 

Now (2.18) represents a class of electromagnetic theories (parameterized 
by M L) for which the correct correspondence to the predictions of classical 
electrodynamics will occur if ~,sL is chosen so that'~ 

J~2K~I \K=I 

To see that this choice is possible, we note that (2.19) can be written in 
terms of the 2N • 2N matrices f2  KJ - (1 - 3 K J); AKJ and the 2N-column 
A~_) (made up from//~_~{) as 

[(~r'~ t __ ~ )  ti12Kth component = ~#(2K, (2.20) ~,(_) . 

This will be satisfied if;~ 

QA - Q = I; A = ~Q-'(Q + I)  (2.21) 

is chosen, as it can be since Ig71 # 0 implies that g7 -1 exists. Hence, with 
the choice of M L=  (gT-l(Q + I )  s z  as implied by (2.21), the equations of 
motion of the elementary measurement of N non-overlapping hydrogen 
atoms is, from (2.18) 

- i t  + m - t s+2r : ,  , ,~t., - j] ~- = 0 (K = 1,2 . . . . .  N) 

(2.22) 

In a sense, (2.22) represents a kind of wave-mechanical generalization of 
'action-at-a-distance' electrodynamics, except that no 'complete absorber' 
condition is ever used,w and the electromagnetic fields are not eliminated 
a pr ior i .  It is the solutions of these N non-linear, partial integro-differential 
equations which will describe the physical interaction of the N atoms in 

t This was shown by Leiter (1969), where it was proven that this choice of &~a implied 
that  the theory contained a ' total coupled radiation field', directly connected to the 
currents in the elementary measurement interactions. Interference between this total 
coupled radiation field, and that  of the time-symmetric, mutual interaction fields, were 
shown to yield the conventional retarded electromagnetic fields, and the radiation 
reaction field, if more than one charged particle existed in the model universe. That  this 
radiation reaction effect was not  due to 'self-interaction' (in the conventional sense) 
was shown by the fact that  if the model universe contained only one charged particle, 
then the radiation reaction field, acting on this particle, was zero. In order to have the 
proper classical correspondence limit between our Dirac bispinor theory of elementary 
measurement electrodynamics, and that of the classical theory given by Leiter (1969), 
it is natural to make the analogous choice of )t rJ. 

:} See Leiter (1969), and Section 2 of the paper quoted therein. 
w See Leiter (1969), Section 2. 
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space-time. However, before attempting to solve (2.22) we must explain 
how we extract physical information about observables from such solutions. 

In general, the prescription for calculation of observables in Elementary 
Measurement Electrodynamics, in a given 3-space volume V, arises from 
the differential conservation laws obeyed by the measurement energy- 
momentum tensor of the theory.'~ Since this particular model theory is 
invariant to time translations [but not space translations, because of the 
'external' character of the protonic currents (2.2)], then the relevant 
differential conservation law of the theory is~ 

T"~ = 0 (2.23) 

where the canonical measurement energy-momentum tensor of the theory 
is given by 

Tt'~= g t ~ S ( ' -  ~ [ ~ x ) a ~  b ' 2 K ) + h c /  ) �9 j 

The integral conservation law implied by (2.23) integrated over a given 
3-space volume V, enclosed by a two-dimensional closed surface S, is 

a t E = - (  dS  l T l~ (2.25) 
S 

where e = Sv dx 3T~ is the total measurement energy, of the system of 
hydrogen atoms, contained in the volume V. In particular, (2.23) through 
(2.25) imply that the total measurement energy contained in V is 

E = f dx 3 (~b(2K)+(ct" t~ + tim) ~b (2K)) -[- 
[K=I  

(J) (K) - ~, E (F~oA~o/2 
K=I J r  

2N 

K=I 
J~K=I  

(2.26) 

It is to be noted that no self-energy appears in (2.26), because, on the basis 
of the paradigm of 'Elementary Measurement', only mutual measurement 
interaction fields go into the action of the elementary measurement theory. 
It is in terms of the total measurement energy of the system that we will 
discuss the solutions to (2.22) in the next sections. 

t See Leiter (1969), Section 3. 
~: This means that the theory will become compatible with overall conservation of 

momentum (and angular-momentum) only if the proton is given a dynamical structure. 
This shortcoming is shared with any conventional quantum theory of atoms which 
treats the proton as a point charge with infinite mass (essentially external to the dynamics 
of the theory). See footnote on p. 218. 
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3. Limit Cycle Solutions of  the Non-linear Field Equations and the Quantum 
Levels of Atomic Hydrogen 

We shall begin our discussion of  the solutions to (2.22) with the especially 
simple case of  a model  universe with a single hydrogen a tom in it (the case 
where N = 1). Then  (2.22) becomes 

- t )  = o ( 3 . 1 )  [ - i~  + m - ~-(~t.) 

where K = 2 denotes the electron and K = 1 denotes the infinitely massive 
proton.  The associated Maxwell fields are given by (2.17) as 

Arot. (1)/~ (x) = f dx '4 Dret (x - x')J(1)(x') • 

At-, !2),,(x] (3.2) = f dx '4 D(_)(x - x')J(2)(x') ~ 

where the related currents are f rom (2.1) and (2.2) 

J~l)(x) = (e 33(x - x(l)); O) 

J~2'(x) = -e~  (z) 7.  ~ b(2) (3.3) 

Insert ion of  (3.3) into (3.1) yields the non-linear integro-differential equation 
(with retardat ion and advancement)  as 

_,o e2 f dx4, TU D(_)(x_ x,)~b(2)(x,)?,t~(2)(x,)yt~] 
[ - i~  Ix - x(D[ 

+ m 

x r = 0 (3.4) 

In (3.4), ~ = e2/4vr is the fine structure constant,  and m is the empirical 
mass of  the electron (there is no mass renormalizat ion since there is no 
self-interaction), t 

A possible solution to (3.4) is an LCS of the form 

r t) = X(,,2)(y) exp (-iE~ 2) t) (3.5) 

where X~2)(x) obeys 

[ e2 ] . (2)/v~ __ /~'(2) . (2)/~ (3.6) 

(~ is a discreet eigenlabel) 

This is possible since (3.5) implies that  =d~2_ )) vanishes in that  state. F rom 
(3.6) we see that  the LCS are identical to the discreet atomic eigen-states 
of  the Dirac equation for hydrogen,  and hence the energy levels, associated 
with (3.6), are the Dirac eigenvalues. This means that,  even though the 
LCS are solutions to an inherently non-linear differential equation, they 
nevertheless form a discreet complete set of  functions which span the 

I" This occurs because of  the absence of  direct self-interaction in (2.22), and (3.1). 
A similar effect occurs in the classical limit (see Leiter, 1969). 
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discreet function space o f  the theory described by (3.1). This property 
will be used in the next section, where we discuss LCT solutions. For  our 
present purposes we note that the LCS can be assumed to obey the ortho- 
gonali ty condit ion 

, ~2)/, ~2)\ ~,,, (3.7) A n  / A n "  / 

since the LCS equation (3.6) is essentially a linear one. In this case, the 
total measurement energy of  the hydrogen atom, given by (2.26), is 

E,, = f dx3[Xn+(2)(ot "0 + t im  - e Z / 4 ~ l x  - x ' l ) l )X~  2)] 

= E~ 2' (3.8) 

in agreement with the LCS energy associated with the measurement equa- 
tions of  mot ion (in LCS), given by (3.5) and (3.6), We note that (2.25) also 
implies that in LCS, OtEn= O, while (3.6) implies that the LCS are derivable 
f rom the time-independent variational principle 

~[E ,  - A(X(,2)/X~,2)) ] = 0 (3.9) 

subject to the constraint (3.7). 
Since this model  deals with non-overlapping hydrogen atoms only, then 

the effects o f  the Pauli Principle (required for electron-electron inter- 
actions) and the effects of  'electron correlations'  are neglected. However,  
they can be included in a more general version o f  this model theory by 
extending it to include the required elementary measurement interactions 
needed to account  for these physical effects.? In addition, if the full e lectron-  
positron elementary measurement interactions are taken into account,  in 
such a generalized version o f  this theory, the remaining accidental de- 
generacies in the Dirac energy levels in (3.6) are broken by the coupling 
to the 'annihilat ion state' of  posi tronium present in such a model.~ Finally, 
if the assumption of  an infinitely massive pro ton  is relaxed, a ' reduced 
mass '  effect on the associated LCS energies will occur, but  may require the 
assumption of  'p ro ton  structure'  (due to ' s t rong '  elementary measurement  

t In the author's generalization of the present theory, the Pauli Principle, and the 
effects of 'correlation interaction', are introduced by properly anti-symmetrizing the 
elementary measurement interactions directly in the Lagrangian formalism a priori 
This approach automatically carries this anti-symmetry into the associated energy- 
momentum tensor, and hence implies that matter-wave electron functions with identical 
LCS, are not possible extrema of the total energy. 

:~ In the generalized version of this theory (referred to in footnote on p. 208) the'vacuum' 
is postulated to be a sea of 'electron-positron' elementary measurement interactions in 
their respective 'annihilation states'. This vacuum state has zero total energy and momen- 
tum, but is capable of interacting with atoms via a 'vacuum polarization' effect. This 
mechanism will tend to break the degeneracy of the hydrogenic levels desci'ibed by (3.1) 
in LCS, and will also prevent a 'negative energy collapse', of the ground state of hydrogen, 
into the negative continuum of energy (contained in the relativistic Dirac wave-mechanical 
structare) by virtue of the antisymmetrized elementary measurement interactions (which 
produce the Pauli Principle) in the theory. Although, at the time of writing, a calculation 
of this 'vacuum' induced energy level shift in hydrogen has not yet been carried out, we 
speculate that this mechanism may be able to account for the Lamb Shift in this elementary 
measurement theoretical context. 



218 DARRYL LEITER 

interactions) in order to agree with the physically observed effects of the 
reduced mass on the hydrogenic energy 1evels.t 

Neglecting the above-mentioned effects, in our present model theory, 
we will study the physical properties of LCS [and a second type of solution 
to (2.22), LCT solutions] and show that even though the structure of this 
theory is different from conventional quantum mechanics, there is a 
relationship between the physical predictions of this non-linear wave theory 
in space-time, and conventional quantum theory in configuration space. 

As a final remark in this section, we note that if we had tried to formulate 
this theorv within the framework of conventional Maxwell-Lorentz 
electrodymamics, then the resulting non-linear equations corresponding to 
(2.22) and (3.1) would have included the effects of the direct self-interaction 
field. AtfJ This self-interaction term wouldprolzibit LCS type of solutions 
from existing, since the balance between the electromagnetic forces and the 
'Schwartz Inequality' forces (inherent in the wave-mechanical structure) 
would be destroyed. This balance is required in order for the LCS eigen- 
function solutions to exist. It is interesting to speculate that the reason why 
the relationship between LCS and quantum levels was not realized earIier 
might be traced to the fact that Maxwell-Lorentz electrodymamics (which 
automatically includes direct self-interactions) when combined with wave 
mechanics, yields a non-linear, wave-mechanical theory which prevents 
LCS from existing. 

4. Limit Cycle Transition Solutions (LCT), 'Quantum Jumps', and the 
Lifetime of Excited (LCS) 

In the non-linear, wave-mechanical, elementary measurement theory 
under consideration, in addition to the LCS solutions (3.5), of equation 
(3.1), there exist LCT types of solutions. We obtain these solutions by 
noting that the fact that the LCS form a discreet, complete set, over the 
discreet part of the non-linear function space of the theory, allows us to 
express solutions to (3.1), which span that region of the function space, as 

t If the proton is given a dynamical role in the theory, then it must participate in more 
than just purely electromagnetic interactions. This is because the Schwartz Inequality 
implies that a < 1 is too small to localize the proton into a region -10-l3 cm, in an atomic 
LCS. Hence, an obvious need for an additional 'strong interaction' (i.e. with an effective 
coupling constant g greater than unity) makes its appearance in Elementary Measurement 
theory. If such a 'strong interaction' is postulated then the proton's finite mass will 
produce a reduced mass correction to the hydrogenic energy levels, obtained from the 
total energy of the system. The details of this calculation will be discussed in a later 
publication. 

$ This can be seen by noting that the conventional Lorentz-Dirac equation for classical 
electrodynamics of point charges in Maxwell-Lorentz Theory (see Jackson, J. D. (1963). 
Classical Electrodynamics, Chap. 17. John Wiley and Sons) with the assumption of 
retardation, implies that in addition to the radiation reaction force, proportional to 
A?-'_,, there is the time-symmetric self-interaction A?+, (which is then absorbed into 
the bare mass by a mass-renormalization technique). This would also occur in any 
theory which attempted to make a union between Maxwell-Lorentz electrodynamics 
and wave mechanics, because of the presence of self-interactions in such theory. 
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a superposition of LCS with time-dependent coefficients, in the following 
mannert 

~(2)(X, t) = Z e(n2)(t) X(n2)(x) (4.1) 
n 

where 
~ I e.(~)(t)l 2 = 1 
n 

is preserved in time. Substitution of (4.l) into (3.1) yields the non-linear 
equations of motion for the coefficients as 

i6~2)(t) = ~ 1-'(,~)(t) c~2)(t) (4.2) 
m 

where 
F.(2)(t) = -,,F(2) r~nm _~ (X(n2)[_ t '~l(-)  IAm ,~..h(2) [,,(2)\/ (4.3) 

If we define the density matrix of the electron matter field as 

P,m(2) (t) - e.(2)(t) e~)(~ ') (4.4) 

then the density matrix equations of motion of the measurement are from 
(4.2) 

tt',m"-(2) = Y~ ~,irr(2) ezm~(2) _ F,l~(2) P t , , )  (4.5) 
I 

It should be noted that (4.2) and (4.5) yield the LCS results of (3.5), when 
e(:) exp(-iE(.2)t)x3,, ,  and ~(2) ~ 3,,,3,.,,. Hence the LCT solutions ~ J n t , .  ! 

to (4.5) give a causal, space-time description of the time evolution of the 
hydrogen atom, as it 'jumps' from one LCS to another. Since the LCS 
play the role of quantum levels in this type of measurement theory, then 
the LCT give a causal description of 'quantum jumps' in this model for- 
malism. This is possible since, in contradistinction to the conventional 
quantum mechanics of coulombic hydrogen, the elementary measurement 
wave-mechanical hydrogen atom is being described by a non-linear integro- 
differential equation in space-time (in conventional quantum theory, the 
atom would be described by a linear differential equation in the associated 
configuration space). For this reason, non-linear elementary measurement 
theories of this type are fundamentally quite different from orthodox 

t Of course, in general, we should also include in our expansion the corresponding 
positive and negative energy coulomb continuum states implied by (3.1). By assuming 
that the atom is described by (4.1), we imply that no ionization is occurring (no positive 
energy coulombic continuum state contribution), and that the negative energy continuum 
is somehow uncoupled from the dynamics. In the present theory, this latter assumption 
is not true and the ground LCS is unstable to a negative energy collapse into minus 
infinite energy. However, in the generalized version of this theory (see footnote on 
p. 208 and footnote on p. 217) the presence of the 'vacuum' sea of positronium atoms in 
their annihilation states, and the Pauli interaction generated by the anti-symmetrized 
elementary measurement interactions, imply that the hydrogen atom is effectively 
decoupled from its negative energy continuum. This is because if the electron entered a 
negative energy state it would have the same properties as the positrons in the 'vacuum 
sea', which is dynamically prohibited by the properly anti-symmetrized elementary 
measurement interaction structure. This generalized version of the theory would then 
yield the same results as the present theory, with the assumption (4.1), and justifies our 
use of (4.1) in Section 4. 

15 
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quantum mechanics, and instead represent a kind of hybrid union of 
classical electrodynamics and wave mechanics (e.g. a semi-classical type 
of structure) for non-linear charged Dirac matter waves in space-time. 

Because of the unorthodox structure of this elementary measurement 
theory of coulombic hydrogen, the LCT solutions to (3.1) describe the 
process of transition between LCS in a causal space-time picture. Hence 
it is of great interest to determine the time of evolution of an LCT into an 
LCS. We can obtain this information from (4.5) by inserting (4.3) and (2.17) 
and expanding the potentials in powers of [ x - x ' l / c  (allowable since 
e =  1/137, is so very much less than unity). Then to lowest order in 
Ix - x' I/c equation (4.3) becomes 

nm = "-pq ~ q p  -~ &~nm X m n  "~  X p q  I~qpX(2) C3 L (3)" ~ ~<2) =.(2) :A(2) 
Pq Pq 

+ 8NM ~ (--X@2)P~/i'~)] + E'~' 8,,, (4.6) 
Pq 

where 
A ~ )  = 1 ~  ~) - F " ) .  ,,c~) = <x~#,ixlx~% ilm ~ Tn , "-nm 

Inserting (4.6) into (4.5) yields 
i.~(2) A(2) r~(2) ~(2) enra =--r im t'nm J~ ~ k--nlr T ' ( 2 ) '  t"lm"(2) _ enl F(2) ' lZ. ,  J (4.7) 

l 
] 

�9 2&pt 1 
Pq 

Because of the smallness of ~ = 1/137, the second and third derivative 
terms in (4.7) are much smaller than the main frequency term, involving 
no derivative. Hence -(2),.. iA(2) ̂ (2) is a good approximation which, P n m  ~ --'--nm p n m  

when differentiated twice, implies that x(z)~ rA(2)32~(2) and =c~)..~ I'J n m  - -  - -  Pc"a n m  .I F '  m n  IJ  n m  - 

i(A(2)~3 ̂ (2) Substitution of this approximation of the derivative terms \--llm] P n m .  

into (4.7) yields for --nli~(2)' 
^. V ~ ( 2 )  ^ ( 2 ) ]  

]-'(2), ,.. ~ |z~nm ~ ' (2) 3 - -  ~ n m  ~ n m  " . - - q p  ." " ' p q  - "=  - I[/]~/P ] Xpqp(2' ;a(2) v(2)'Z(/J(2)]2~z(2)O. / . . . j  (4.8) 

Again because of the smallness of ~, the p{.~(t) undergo oscillations, during 
LCT, which have a very slowly varying envelope. For this reason, if T 
represents a time interval which contains a large number of characteristic 
periods of oscillation, then 

T 

p (2 )  . ( 2 )  = 1 f _(2 )  _ (2 )  ~/,  ,~a (SnqSmp + 8rim 8pq) (4.9) nm P p q  T Pnm  P p q  t~t, 

0 

Using (4.9), if we calculate the time average of (4.7) over this interval T, 
then we have for the case where n = m, 

~(z) ~ __4~ ~ (A(2)~31v(.)12 (4.10) 
r n n  - -  3c 3 ",,~ln ] I ~ l n  [ 
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Since p,~ represents the weighting of the r/th LCS in the ensuing LCT, 
then the characteristic time it takes for the a tom to evolve from the r th  
LCS into a state where err~(2~ = 0, is given by the reciprocal of (4.10) with n 
set equal to r,~" as 

4c~ (2) 3 (2) 2 
T ~ 2 ) :  ]1/~r 2)] "~ 3C3(~lr ) lx,r I (4.11) 

k/= 1 3 

The characteristic time of energy transfer during the LCT from the 
r th LCS, given by (4.11), is in exact agreement with the lifetime of the r th  
excited quantum level (of a hydrogen atom) which is obtained from ortho- 
dox quantum mechanics, utilizing a 'second quantization' of the electro- 
magnetic field.:]: The implication here is that the time required for a 'quan- 
tum jump '  to occur, in elementary measurement theory, is precisely the 
observed 'lifetime' of the associated quantum states involved. The reason 
why these 'spontaneous transitions' can occur in this 'semi-classical' type 
of elementary measurement theory, is because of its inherent non-linear 
structure. The non-linearity implies that the excited LCS represent a form 
of unstable equilibrium. Hence, if  the atom is only approximately in the 
r th  LCS at t = 0, because of other disturbances in the universe,w the atom 
in question will have a strong tendency to evolve (via LCT) to LCS of lower 
energy, all this occurring without ever 'second quantizing' the associated 
electromagnetic field. 

However, it is experimentally well known that electromagnetic radiation 
emitted from atoms appears quantized into 'photons '  of  electromagnetic 
energy. I f  elementary measurement theory does not quantize the electro- 
magnetic field, then how does it account for the apparent corpuscular 
character of  atomic radiation ? We shall answer this question in the next 
section, where we discuss 'measurement radiation'. 

5. 'Measurement Radiation', 'Photons', and Induced Limit Cycle Transitions 

In the previous section, we showed that an isolated hydrogen atom has 
a strong tendency to make limit cycle transitions to lower energy LCS, 
if it is in an excited LCS, because of the inherently nonlinear structure of  
the equations of  motion of the hydrogen atom in this model. However, 
when this LCT occurs a 'pulse' is generated in the mutual retarded potential 
A ~ ] . )  (assuming that the Kth atom is in LCT). This pulse travels outward 

t This is because we essentially assume that (4.1) is valid with the boundary condition 
that the atom is in the rth LCS at t = 0. Then the reciprocal of the time average of b~ ) 
will give the characteristic relaxation time of the rth state to decay into p,~) = 0. 

A straightforward discussion of 'second quantization' is given in Gottfreid, K. 
(1966). Quantum Mechanics, Chap. VIII. W. A. Benjamin. 

w These 'other disturbances' would be properly accounted for by the presence of the 
'vacuum' discussed in footnotes on pp. 217, and 219. Another possibility would be from 
the electromagnetic disturbances due to other atoms in the model universe. 
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with the speed of light, until it is 'detected' by another atom ~b ~2s) ; (J # K). 
Since the act of detection of the pulse in A(~r~) t ) requires a 'detector' atom 
to be present, the LCT pulse in Av~2r~!) by itself does not represent the 
radiation process. This is because, in Elementary Measurement Electro- 
dynamics, the measurement interaction between emitter and detector 
cannot be neglected. This process is similar to the definition of radiation 
in 'action-at-a-distance' types of electrodynamics, but in this theory no 
'complete absorber' condition is invoked, and the electromagnetic fields 
are dynamical variables not eliminated a priori.t We shall refer to this 
process of measurement of radiation as 'measurement radiation', to 
distinguish it from that usually referred to in conventional Maxwell- 
Lorentz types of electrodynamics (where the 'detector' is implicitly assumed 
to vanish in the limit).;~ 

Within the framework of our theory, we see that even though the pulse 
is a classical pulse, the induced response of the 'detector' atom, to this 
classical pulse, is to make LCT to higher or lower LCS (depending on the 
initial state of the detector and the phase of the pulse when it arrives at the 
detector). Since 'measurement radiation' is defined by the induced response 
of the 'detector' to the 'emitter' field, and since the energy of the 'detector' 
is changed by discreet amounts when an LCT occurs, then the 'measurement 
radiation' is apparently 'quantized', in the sense that the induced response 
of the 'detector' is quantized. Since measurement radiation always requires 
the detector for its definition, then measurement radiation contains the 
apparent effects of 'photons'. However, no 'second quantization' has been 
invoked and these 'photons' are not elementary particles. Instead, they are 
secondary dynamical effects associated with the structure of the elementary 
measurement. The conclusion to be drawn here is not that 'second quan- 
tization' is 'wrong', but rather that the apparent effects of 'photons' can be 
produced, in wave-mechanical Elementary Measurement Electrodynamic 
theories, without requiring the 'second quantization' formalism. 

To see this process in more detail, we shall examine the process of 
measurement radiation in terms of two atoms ~b(2)(x, t); ~b(4)(x, t) localized 
at x(1); xc3) where Ix3] >> ]Xl]. Then if $(2)(x,t) is undergoing an LCT, 
the process is described by (2.22) with N = 4. Now at a time Ix31[c after 
the LCT of et2)(x, t) begins (we will assume that the origin or our coordinates 
is at x I - 0 ) ,  ~b(4)(x, t) will begin to sense the wave-zone component of 
A(2) in its equation of motion. From (2.17), and the fact that At~(ret.) = /~ (ret.)  
At(+) + A~(_), this wave-zone field is given by 

(2) -e f dx,3t~(2)(x,,tr)yvtff2)(x,,tr) (5.1) A#(ret.)(X , t )  ~ 4~lx I 

tr = t -  I x l / e  

"~ See Leiter (1969). 
~: In MaxweU-Lorentz electrodynamics, the electromagnetic field is defined in terms 

of the force on a test charge, in the limit as the test charge-to-mass ratio vanishes. This 
definition is clearly non-operational in the microscopic domain. 
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the equation of motion of the 'detector' ~b (4), for t > [x3]/c, is given by 

(J) (4) 4 _ -i~ + m - e ~ A(ret . )  - -  eA(_) (x, t) - 0 (5.2) 
Jq :4= l  

Now, there will be a sequence of pulses in _~(2) with frequencies equal zx/~(ret.)~ 
to the difference in the various LCS energies involved, and of pulse length 
on the order of crN. Let us suppose that our detector is initially in the r th 
LCS when the wave-zone pulse from the emitter arrives. Then we can 
write the detector wave function as~ 

~b'a)(x, t) = ~ e~)(t) X~)(x) exp (--iEN t) (5.3) 
N=I 

where c~)(xffc) = ~ur and E~ 2) = ~ur(a) _- EN. 
Now, if the radiation reaction potential ,(4) is very small compared to 

the retarded potentials A(s)~,t.) x J #  4 in (5.2), then the equation of motion 
of the detector atom, for ~N + xffc > t > x3/e can be approximated by 

- i8 + m - e d#4=l ~ - - r e , . ]  "t" \ ~ ,  " . , '  - -  0 ( 5 . 4 )  

In addition, if we use (2.17), (2.2) and (5.1) in (5.4), it can be written as 

- i O + m  + j~(4)(x, t) _~ 0 (5.5) 

where 

jtz) (tr) - - e  f dx 3' ~b(2)(x ', tr) y~b(2)(x', tr) (5.6) 

Inserting (5.3) into (5.5) yields the equation of motion for the coefficients 
c~)(t) in (5.3) as 

ey'd(2)(tr) ]M)(4) 
ic~)(t)~ m ~")(NI 47fix) c~)(t)exp[i(E~c-Em)t] (5.7) 

which, because ~b (4) is localized into a volume on the order of 1/m~ ~ Ix3l, 
can be written as 

[ieANm X(N4M) ._Z (2) It (I I/c)]] c~)(t) exp (iANM t) (5.8) X3 i(~4)(t) N 

[ 4,,Ix3L ] 

where we have use the property of the Dirac coulombic functions that:~ 

f dx3(N[yl M )  = iANu X N M  (5.9) 
xma -= {NIxIM) 

ANM --= EN -- EM 

t See footnote on p. 219. 
~t See footnote on p. 212. 
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Now if we assume that the emitter wave function @(2) c a n  be written in 
the forint 

= cN (t)xN (x) (5.10) 
N 

during its emission LCT, then, using (5.9), (5.6) can be written 

3cz)(t - x3/c) = - i e  E -p~A "'paY(E)Ptq2)( t -- x3/e) (5.11) 
PC 

where 
Ix~l and /Uqp~(2) ~ C(2) C~2)* 

Now (5.11) can be related to the wavezone electric and magnetic fields of 
~b(2)(x, t) defined as 

E ( 2 ) ( X ( 3 ) ,  t) ~ J(t  - -  X3/C ) (h = C = 1) (5.12) 
_ --  4~rX(3 ) 

B(2)(x(3),  t )  = N (3) • E(2) ;  .m (3) =- x3/x 3 (5 .13 )  

N (3) "E(2)(x3, t) = 0 (5.14) 

by the fact that during the LCT of ~b (2), the approximation tpqp" .(2) _~ -~p~'qpA (̂2) 
is valid, because the smallness of e implies that the LCT involves slowly 
damped oscillations. Inserting this approximation, and (5.11), into (5.12) 
and defining ,,qp~(2) = p~)exp(-iAqpt) ,  we have that? 

j ( 2 ) ( t  _ X3/C ) e~, _4~rix3 ~ w(z)rv  t )exp(idqpt)  (5 .15)  .L~pq k~(3)~ 
Pq 

where 
- e  ~r A2 ~(2)/'~ 17(2)tv t) =-- " ~ p t ' -  x3/c) (5.16) 

J~pq k A 3, 4~3X 3 "~pq ~ pq 

Insertion of (5.16) into (5.8) yields the equation of motion of the detector 
atom's induced response, to the emitter wave-zone fields as 

i d ~ ) ( t ) ~ _  ~ [(~_)ANM ~'Ng~ "Evq (x3, t ) ] ( 2 )  CM(4)(t) exp[i(du~t + A~v)t ] (5.17) 
Mpq 

With the boundary condition that the detector atom is initially in the Mth  
LCS (c~4)(x3/c) = 3st), then (5.17) becomes for t ~ x3/c 

~-" r/AuM'~ (4) (2) .l i d ~ ' ( t ) = - ~ _ , [ [ - - - ~ ) e x . M ' E . , ( x 3 ,  t ) J e x p [ i ( A . ~ +  A. , ) t ]  (5.18) 

Since e ~ 1, then E(p])(x3, t) will be slowly varying over A t ~ 1/Apq. Then 
(5.18) implies that the tendency of the detector atom ~b 4 to make an induced 

t" This subst i tu t ion is valid because i~(2) ~2) (2) .e~p ~- Aqppqp, and hence %p will be a slowly 
va ry i n g  funct ion of  time, compared  to exp(iAq, t).  
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LCT from the R th LCS to the Sth LCS (where either R > S or R < S) is pro- 
portional to ]X~s~[ 2. This is because this tendency is proportional to 1c~(4)[ 2 
which is in turn proportional to ]x~s~[ z from (5.18). It is this induced 
response (or induced transition) which represents the act of the detector 
atom as it records the measurement radiation emitted by ~b ~2) and detected 
by ~b (4) in terms of 'photons' whose frequencies are equal to the LCS energy 
differences, divided by Planck's constant. 

Of course, these 'induced transitions' and the previously discussed 
'spontaneous transition' have been developed within the framework of 
a deterministic, non-linear, wave-mechanical theory &elementary measure- 
ment, and the question arises as to how this can be related to the apparently 
statistical results of quantum theory. A connection does exist between the 
predictions of this nonlinear measurement theory and those of quantum 
mechanics, and will be discussed in the next section, where we will derive 
the Planck blackbody radiation formula. 

6. Statistics, 'Hidden Variables', and a Derivation of the Planck Blackbody 
Radiation Formula, in Elementary Measurement Electrodynamics 

An interesting connection exists between this essentially deterministic 
theory, of the elementary measurement of charged, non-linear, matter 
fields in space-time, and the statistical predictions of conventional quantum 
mechanics of non-overlapping hydrogen atoms, in configuration space. 
First of all, as was noted previously, the LCS are in direct correspondence 
with the conventional eigenfunctions of Dirac hydrogen atoms. Secondly, 
if we consider a model universe made up of a very large number of non- 
overlapping hydrogen atoms [as described by (2.22)] then in order to make 
a deterministic prediction from the theory, we must have the required 
initial data needed to run the large number of associated non-linear 
differential equations of the system in space-time. Because of the presence 
of advanced and retarded non-linearities in (2.22), and because the smallness 
of ~ <~ 1 allows us to expand these potentials in powers of I x - x']/c, then 
both the initial values of ~b(2~(x, t) and their derivatives (the range of the 
order of which depends on the power of the expansion approximation 
taken) are required initial data to run the equations. The conventional 
quantum mechanical problem would require only the initial values of the 
quantum mechanical wavefunction in configuration space, in order to run 
the associated, linear, first-order quantum mechanical equation (which 
for non-overlapping atoms would correspond to specifying the initial state 
of each atomic wavefunction, in an overall wavefunction made up of the 
products of the atomic wavefunctions). Hence elementary measurement 
electrodynamics, applied to wave mechanics in space-time, represents a 
kind of 'hidden variable' theory with respect to conventional quanum 
mechanics. This is because a greater amount of initial data (than that 
required by conventional quantum mechanics) for the aggregate of atoms, 
in space-time, is required by the theory. This extra initial data could play 
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the role of 'hidden variables', even though the raison d'etre of this theory 
is not based on the postulate that quantum mechanics is somehow in- 
complete, and hence requires the ad hoc insertion of sub-quantal degrees 
of freedom.t If the required initial data is unknown:~ for the large aggregate 
of atoms, then statistical predictions would arise, in this theory, from the 
application of classical statistics to the non-linear wave-mechanical micro- 
structure. Interference effects would still be possible, within this classical 
statistics, because of the wave-mechanical structure upon which it was 
being applied. 

In order to see this in more detail, let us calculate the 'probability per 
unit time' of a 'spontaneous transition', and an 'induced transition', for a 
typical atom in the aggregate, treated statistically. First of all, the calcula- 
tion performed in Section 4 (generalized to an aggregate of atoms), yields 
the result [from (4.11)] that the 'probability'w of a spontaneous LCT out 
of the Rth LCS, p~2r), is 

1/.r~K) _p~R2K)~ ~ 4~.A3 Iv(zK)12 (K= 1 ,2 , . . ,N/2)  (6.1) 3C3""RLI"RL I 
L=I 

This can be written in the form 
R 4 ~  

p(R2/o ~,, A(2K). A(2K) A3 [v(ZK)12 (6.2) 
" ~ R L  , R L  ~ -  ~ 3 z " a R L ] " " R L  ] 

L = I  

where A(R~ K) is the 'probability' of spontaneous LCT from the Rth LCS to 
the Lth LCS. It is interesting to note that (6.2) is immediately recognizable 
as the well-known 'Einstein A coefficient' heretofore consistently derivable]l 
only within the framework of quantum electrodynamics. However, if 

t The concept of 'hidden variables' in quantum theory was first developed by David 
Bohm. For the latest work in this vein, see Bohm, D. and Bub, J. (1966). Review of  
Modern Physics, 38, 447. 

In the same sense that knowledge of a 'macro-state' of an aggregate of atoms does 
not necessarily imply that complete knowledge of the 'micro-state' structure is known. 
This is because a macro-state is degenerate with respect to the possible combinations 
of micro-states, in the aggregate, which could give the said macro-state its apparent 
properties. Of course the required initial data, needed to run the large number of non- 
linear measurement equations, involves micro-state knowledge, in terms of the wave- 
mechanical atoms in the aggregate. The implication, in this model, is that the universe 
'knows' this micro-information and uses it in the non-linear dynamics of the elementary 
measurement structure. However, 'macroscopic' observers (e.g. human observers, large 
machines, etc.) made up of aggregates of atoms, would have difficulty in 'extracting' this 
micro-information. This is because the attempt at extraction would always involve the 
interaction of large macroscopic aggregates of atoms, whose change in macro-state 
would be used to determine the desired micro-information. 

w Probability is not fundamental in this type of wave-mechanical theory in space-time. 
Instead, statistics arise from the application of classical statistics to the microscopic 
wave-mechanical structure, in spacetime, for an aggregate of atoms in interaction. 

I[ Many discussions of this are in the literature. Perhaps the most readable is given by 
Slater, J. C. (1960). Quantum Theory of  Atomic Structure, Vol. I, pp. 140-159. McGraw- 
Hill. See also Sakurai, J. (1968). Advanced Quantum Mechanics, pp. 38-39. Addison- 
Wesley. 
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other atoms are present in the modcl universe, then we must also include 
the effects of the 

N 
--e E ~(J) za(ret.) 

J =~ 2K 

potentials, as well as that of the -~=,(_),'~a(2x) potential. Generalizing the cal- 
culation done in Section 5 [and specifically (6.1)] to the case of an aggregate 
of atoms, then the equation of motion of the 2Kth atom (assumed initially 
in the Rth LCS) is given by 

( A N r )  2x " (aggr') i6~2K)(t)-~-~ (XNR) Evq (Xzx_l,t)exp[i(ANR+Aw)t ] (6.3) 
e a  

where 
2N 

E~r'(x2g_,, t) = ~. E~]J)(XzK-1, t) (6.4) 
J4:K 

is the total electric field of the aggregate of atoms (J = 1,2 . . . .  ~ 2K) 
associated with the frequency (Ep-  Ea)/h = Apq. Integrating (6.3) over 
At ~ 1/ANR (and assuming that E~,~ gr" is slowly varying over this time 
interval, because o f ,  ~ 1), we havet 

I c~K)(t)[ 2 ~ A_~,.,2K 2 ~-a,,r. le(A t) cos 20NR (6.5) At . . . . .  I~NRi I.tUNR 

However, the average of cos20N, over 4~- steradians is ~, hence (6.5) is 

Ic~)(t)l  2 4 ~  2 aggr.  2 
At = 3 IxNR] ([ENR ] At) (6.6) 

In addition, since there are two possible polarization directions which 
aggr. contribute to ENR , hence it can be written as 

E ~  ~" = (E~]~r'(1)) r + (E~ ' (2 ) )  ez (6.7) 

where e~. r = 0 and 

(e21 X2n-1 = 0 )  

ff  we assume an equal intensity along the two polarization directions, on 
the average, then E~v~r'(1) = E~v~'(2) -~ E~v~'(0). Then (6.6) can be written 
as 

I c ='O(0l z , 
3 I2[Iga  r'(O)12At] (6.8) 

Now the measurement radiation energy density, per unit frequency, detected 
by the 2kth atom during At ~ 1/ANR is 

At= [(E'r'(o))22(B~'~'(O))Z]At (6.9) g~v~,,~ = (E~vg~r" (0)) z 

t This is justified by equation (5.16). 
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Hence (6.8) is 

IC~r ) ( t ) ]  2 ( ~  v(2K) 2x~ ~aggr. 
A t  ~-- "~NR ] NR(~K) (6.10) 

But since Ic~2K)[2/lit is proportional to the probability per unit time of an 
induced LCT, from the Rth  LCS to the Nth LCS (N > R or N < R) we see 
that the 'Einstein B coefficient' is 

B(uZR~ ) = 87r~ ix(uZ~)[ 2 (6.11) 
3 

which again is in agreement with that calculated from quantum electro- 
dynamic arguments, t Now having calculated the Einstein A and B co- 
efficients, we can proceed to assume that the aggregate of atoms is in 
statistical equilibrium. Then the usual derivation of the Planck energy 
density per unit frequency formula follows in a straightforward manner,$ 
and yields for the 2Kth atomic 'detector', 

A (2K) I I~(2K) 
NR I~t'tNR 

(BR• /BuR ) (exp [AuR/KT] - 1) (6.12) 

which, when (6.2) and (6.1 l) are inserted, yields the well-known formula 
(here vNs = AuR/2rrh and h and c are explicitly shown) 

] 
~ K ,  c 3 [exp [hVuR/KT] - 1 

(6.13) 

We emphasize that this result has been derived from a non-linear, wave- 
mechanical, elementary measurement theory in space-time, which is 
fundamentally deterministic. No second quantization of the electromagnetic 
fields is used, and statistics arise from the application of classical statistics 
to an aggregate of charged matter waves in space-time. The apparent 
effects of 'photons', implied in (6.13), arise essentially from the non-linear 
response of 'detector' atoms to 'emitter' atoms, and not to an underlying 
granular nature of the electromagnetic field. The measurement radiation 
density (6.13) is operationally defined in terms of emitter and detector 
atoms and is not, as in Maxwell-Lorentz theory, defined independently of 
the act of measurement. 

7. Conclusions 

We have shown how to generalize the paradigm of Elementary Measure- 
ment, discussed elsewhere,w into a non-linear spinor wave-mechanical 

t Refer to the literature quoted in footnote on p. 221. 
:~ A simple discussion of these coefficients, and their use in deriving the blackbody 

radiation formula of Planck, is given in Sokolov, K., Loskutov, Y. and Ternov, I. 
(1966). Quantum Mechanics, Chap. 9. Holt, Rhinehart and Winston. 

w See Leiter (1969). 
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theory of atomic processes in space-time. The application of this theory to 
non-overlapping hydrogen atoms yielded the result that the inherent 'limit 
cycle solutions' of the non-linear measurement equations, corresponded 
to the quantum levels of conventional Dirac hydrogen. Even though these 
LCS were solutions to a non-linear differential equation, they have the 
property of being a complete set of functions over the discreet functions 
space of the measurement. Hence superpositions of these solutions can 
be used to describe general LCT solutions. The LCT have the property of 
describing atomic transition processes, between quantum levels, in a causal 
and continuous manner (reduction of the wave packet). Two kinds of LCT 
were discussed. For an isolated hydrogen atom, the characteristic lifetime 
of the LCT was shown to be identical to that calculated from conventional 
quantum mechanics and quantum electrodynamics for hydrogenic levels 
(i.e. equal to the inverse of the sum of the relevant 'Einstein A coefficients', 
or on the order of 10 -s see). For a hydrogen atom under the influence of 
the measurement radiation fields of the other hydrogen atoms in the system, 
in addition to the 'spontaneous transitions' described above, 'induced 
limit cycle transitions' are generated. These induced transitions correspond 
to the effective absorption or emission of a 'photon' of measurement 
radiation energy and have a characteristic lifetime related to the associated 
'Einstein B coefficient' or on the order of 10 -~  sec. 

'Photons', in this theory, are not elementary particles (i.e. quanta of the 
quantized electromagnetic field), but are instead produced by the secondary 
dynamical effect related to the inherent nonlinear structure of the process 
of 'measurement radiation'. 

This type of atomic theory is quite different from the conventional, 
linear, quantum wave-mechanical theory in configuration space. This is 
because it is not inherently statistical in nature. Instead it represents a 
deterministic theory of charged matter waves, interacting in space-time 
through an elementary measurement electrodynamical coupling. Even 
though there is no strict 'uncertainty principle' in this theory, the Schwartz 
Inequality,t inherent in the Dirac wave-mechanical structure of this 
model, implies that a mathematical equivalent of the Heisenberg Un- 
certainty Principle may be deduced. This equivalent implies the same 
physical constraints, on atomic systems, as that of the uncertainty principle 
in conventional quantum theory. However, the lack of a wave-particle 
duality, in this theory, implies that 'probability' and 'uncertainty' are not 
fundamental to its interpretation. Statistics arise from the application of 
classical statistical mechanics to the wave-mechanical micro-structure, for 
an aggregate of hydrogen atoms in interaction.~ Hence, even though the 
electromagnetic fields are not second quantized, in the theory, both induced 

"~" See footnote  on p. 208. Fo r  example zlP~2r)~Jx(2~)>~ h; K =  1, 2, . . . ,  N/2 would be 

valid, where AP ~2K) and Ax  ~2K) are the root-mean-square values o f  the operators P = - i V  
and x = x (which appear in a natural  fashion in the Lagrangian and total energy of  the 
system). 

;~ See footnote  on p. 226. 
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and  spon taneous  t rans i t ion  ' p robab i l i t i e s '  per  uni t  t ime can  be calculated,  
and  are  ident ical  to  those calcula ted for  convent iona l  q u a n t u m  electro-  
dynamics .  Hence  a consis tent  der iva t ion  o f  the P lanck  b l a c k b o d y  r ad i a t i on  
fo rmula  can be given, in which the associa ted  e lec t romagnet ic  field is a 
c -number  and  is not  second quan t i zed . t  

I t  is no t  the purpose  o f  this work  to argue tha t  convent iona l  q u a n t u m  
mechanics  and  q u a n t u m  e lec t rodynamics  are 'wrong ' .  Ins tead,  we merely 
wish to  demons t r a t e  the fact  tha t  many  of  the predic t ions  o f  qua n tum 
mechanics  can  be r ep roduced  wi thin  the f r amework  o f  E lementa ry  Measure-  
men t  Elec t rodynamics ,  app l ied  to  Di rac  wave mechanics .  M u c h  fur ther  
work  needs to  be done  in o rder  to unde r s t and  the extent  to  which this theory  
can dupl ica te  the  ma in  results  o f  q u a n t u m  elect rodynamics ,$  and  to wha t  
extent  i t  differs.w The fact  tha t  the  Einstein A and  B coefficients and  the 
P lanck  b l a c k b o d y  fo rmu la  can be der ived without quant iz ing the field 
presents  a cr i t ical  p recedent  which is no t  t r ivial  in its impl ica t ion .  
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reason, the experiment suggested by Jaynes and Stroud, on pages 118-119 of their paper, 
would also be a test of our theory. In particular, the lifetimes of excited atomic states 
should be distorted by the "strong excitation" of extremely intense laser beams, in the 
experiment they suggest. This also implies that for extremely high temperatures the 
distortion of the "effective Einstein A coefficient" will cause the blackbody radiation 
spectrum to be itself distorted. The details of this will be forthcoming in a future 
publication. 


